एमआईटी एआई को और अधिक स्मार्ट बनाने पर शोध कर रहा है

एमआईटी टीम एआई मॉडल को वह सिखाती है जो वे पहले से नहीं जानते थे।

कृत्रिम बुद्धिमत्ता (एआई) का अनुप्रयोग तेजी से बढ़ रहा है और यह हमारे दैनिक जीवन और स्वास्थ्य सेवा, दूरसंचार और ऊर्जा जैसे उच्च-दांव वाले उद्योगों के साथ तेजी से जुड़ता जा रहा है। लेकिन बड़ी शक्ति के साथ बड़ी जिम्मेदारी भी आती है: एआई सिस्टम कभी-कभी गलतियाँ करते हैं या अनिश्चित उत्तर देते हैं जिनके गंभीर परिणाम हो सकते हैं।

एमआईटी की थेमिस एआई, जिसकी सह-स्थापना और नेतृत्व प्रोफेसर डेनिएला रूस ने सीएसएआईएल लैब से किया है, एक अभूतपूर्व समाधान प्रदान करती है। उनकी तकनीक एआई मॉडल को 'यह जानने में सक्षम बनाती है कि वे क्या नहीं जानते हैं'। इसका मतलब है कि एआई सिस्टम स्वयं इंगित कर सकते हैं कि वे अपनी भविष्यवाणियों के बारे में कब अनिश्चित हैं, जिससे नुकसान होने से पहले गलतियों को रोका जा सकता है।

यह इतना महत्वपूर्ण क्यों है?
कई एआई मॉडल, यहां तक कि उन्नत मॉडल भी, कभी-कभी तथाकथित 'मतिभ्रम' प्रदर्शित कर सकते हैं—वे गलत या निराधार उत्तर देते हैं। उन क्षेत्रों में जहां निर्णय महत्वपूर्ण होते हैं, जैसे कि चिकित्सा निदान या स्वायत्त ड्राइविंग, इसके विनाशकारी परिणाम हो सकते हैं। थेमिस एआई ने कैपसा विकसित किया, एक ऐसा मंच जो अनिश्चितता परिमाणीकरण (uncertainty quantification) लागू करता है: यह विस्तृत और विश्वसनीय तरीके से एआई आउटपुट की अनिश्चितता को मापता और परिमाणित करता है।

 यह कैसे काम करता है?
मॉडल में अनिश्चितता जागरूकता लाने से, वे आउटपुट को जोखिम या विश्वसनीयता लेबल प्रदान कर सकते हैं। उदाहरण के लिए: एक स्वचालित ड्राइविंग कार यह इंगित कर सकती है कि वह किसी स्थिति के बारे में निश्चित नहीं है और इसलिए मानवीय हस्तक्षेप को सक्रिय करती है। यह न केवल सुरक्षा बढ़ाता है, बल्कि AI सिस्टम में उपयोगकर्ताओं के विश्वास को भी बढ़ाता है।

तकनीकी कार्यान्वयन के उदाहरण

  • PyTorch के साथ एकीकरण में, मॉडल को इसके माध्यम से रैप करना शामिल है capsa_torch.wrapper() जहाँ आउटपुट में भविष्यवाणी और जोखिम दोनों शामिल हैं:

Python example met capsa

TensorFlow मॉडल के लिए, कैपसा एक डेकोरेटर का उपयोग करता है:

टेन्सरफ़्लो

व्यवसायों और उपयोगकर्ताओं पर प्रभाव
नेटकेयर और उसके ग्राहकों के लिए, यह तकनीक एक बड़ी छलांग का प्रतिनिधित्व करती है। हम ऐसे एआई एप्लिकेशन प्रदान कर सकते हैं जो न केवल बुद्धिमान हैं, बल्कि सुरक्षित और अधिक अनुमानित भी हैं, जिनमें भ्रम (hallucinations) की संभावना कम होती है। यह संगठनों को बेहतर सूचित निर्णय लेने और व्यावसायिक रूप से महत्वपूर्ण अनुप्रयोगों में एआई को लागू करते समय जोखिमों को कम करने में मदद करता है।

निष्कर्ष
एमआईटी टीम यह दर्शाता है कि AI का भविष्य केवल अधिक स्मार्ट बनने के बारे में नहीं है, बल्कि मुख्य रूप से सुरक्षित और निष्पक्ष रूप से कार्य करने के बारे में भी है। नेटकेयर में, हम मानते हैं कि AI तभी वास्तव में मूल्यवान बनता है जब वह अपनी सीमाओं के बारे में पारदर्शी हो। कैपसा जैसे उन्नत अनिश्चितता परिमाणीकरण उपकरणों के साथ, आप उस दृष्टिकोण को व्यवहार में भी ला सकते हैं।

जेरार्ड

जेरार्ड एक एआई सलाहकार और प्रबंधक के रूप में सक्रिय हैं। बड़े संगठनों के साथ व्यापक अनुभव के साथ, वह किसी समस्या को बहुत तेज़ी से सुलझा सकते हैं और समाधान की दिशा में काम कर सकते हैं। आर्थिक पृष्ठभूमि के साथ मिलकर, वह व्यावसायिक रूप से जिम्मेदार विकल्प सुनिश्चित करते हैं।

एआईआर (कृत्रिम बुद्धिमत्ता रोबोट)