कृत्रिम बुद्धिमत्ता (एआई) का अनुप्रयोग तेजी से बढ़ रहा है और हमारे दैनिक जीवन और स्वास्थ्य सेवा, दूरसंचार और ऊर्जा जैसे उच्च-दांव वाले उद्योगों के साथ तेजी से जुड़ रहा है। लेकिन बड़ी शक्ति के साथ बड़ी जिम्मेदारी भी आती है: एआई सिस्टम कभी-कभी गलतियाँ करते हैं या अनिश्चित उत्तर देते हैं जिनके गंभीर परिणाम हो सकते हैं।
एमआईटी की थेमिस एआई, जिसकी सह-स्थापना और नेतृत्व प्रोफेसर डेनिएला रूस (सीएसएआईएल लैब) कर रही हैं, एक अभूतपूर्व समाधान प्रदान करती है। उनकी तकनीक एआई मॉडल को 'यह जानने में सक्षम बनाती है कि वे क्या नहीं जानते हैं'। इसका मतलब है कि एआई सिस्टम स्वयं इंगित कर सकते हैं कि वे अपनी भविष्यवाणियों के बारे में कब अनिश्चित हैं, जिससे नुकसान होने से पहले त्रुटियों को रोका जा सकता है।
यह इतना महत्वपूर्ण क्यों है?
कई एआई मॉडल, यहां तक कि उन्नत मॉडल भी, कभी-कभीतथाकथित 'मतिभ्रम' (hallucinations) प्रदर्शित कर सकते हैं—वे गलत या निराधार उत्तर देते हैं। उन क्षेत्रों में जहां निर्णय महत्वपूर्ण होते हैं, जैसे कि चिकित्सा निदान या स्वायत्त ड्राइविंग, इसके विनाशकारी परिणाम हो सकते हैं। थेमिस एआई ने कैपसा (Capsa) विकसित किया है, एक ऐसा प्लेटफॉर्म जो अनिश्चितता परिमाणीकरण (uncertainty quantification) लागू करता है: यह एआई आउटपुट की अनिश्चितता को विस्तृत और विश्वसनीय तरीके से मापता और परिमाणित करता है।
यह कैसे काम करता है?
मॉडल को अनिश्चितता जागरूकता सिखाकर, वे जोखिम या विश्वसनीयता लेबल के साथ आउटपुट प्रदान कर सकते हैं। उदाहरण के लिए: एक सेल्फ-ड्राइविंग कार इंगित कर सकती है कि वह किसी स्थिति के बारे में निश्चित नहीं है और इसलिए मानवीय हस्तक्षेप को सक्रिय कर सकती है। यह न केवल सुरक्षा बढ़ाता है, बल्कि एआई सिस्टम में उपयोगकर्ताओं का विश्वास भी बढ़ाता है।
capsa_torch.wrapper() जहाँ आउटपुट में भविष्यवाणी और जोखिम दोनों शामिल होते हैं:

निष्कर्ष
एमआईटी टीम यह दर्शाता है कि एआई का भविष्य केवल अधिक स्मार्ट बनने के बारे में नहीं है, बल्कि सुरक्षित और निष्पक्ष रूप से कार्य करने के बारे में भी है। नेटकेयर में, हम मानते हैं कि एआई तभी वास्तव में मूल्यवान बनता है जब वह अपनी सीमाओं के बारे में पारदर्शी हो। कैपसा जैसे उन्नत अनिश्चितता परिमाणीकरण उपकरणों के साथ, आप उस दृष्टिकोण को व्यवहार में ला सकते हैं।