إن تطبيق الذكاء الاصطناعي (AI) ينمو بسرعة ويتشابك بشكل متزايد مع حياتنا اليومية والصناعات الحساسة مثل الرعاية الصحية والاتصالات والطاقة. ولكن مع القوة العظيمة تأتي مسؤولية عظيمة: أنظمة الذكاء الاصطناعي ترتكب أخطاء أحيانًا أو تقدم إجابات غير مؤكدة قد تكون لها عواقب وخيمة.
يقدم Themis AI التابع لمعهد ماساتشوستس للتكنولوجيا، والذي شاركت في تأسيسه وقيادته البروفيسورة دانييلا روس من مختبر CSAIL، حلاً رائدًا. تتيح تقنيتهم لنماذج الذكاء الاصطناعي أن 'تعرف ما لا تعرفه'. وهذا يعني أن أنظمة الذكاء الاصطناعي يمكنها أن تشير بنفسها عندما تكون غير متأكدة من تنبؤاتها، مما يسمح بتجنب الأخطاء قبل أن تسبب الضرر.
لماذا هذا مهم للغاية؟
العديد من نماذج الذكاء الاصطناعي، حتى المتقدمة منها، يمكن أن تظهر أحيانًا ما يسمى بـ 'الهلوسات' - حيث تقدم إجابات خاطئة أو غير مؤسسة. في القطاعات التي تكون فيها القرارات ذات وزن كبير، مثل التشخيص الطبي أو القيادة الذاتية، يمكن أن يكون لهذا عواقب وخيمة. طورت Themis AI منصة Capsa التي تطبق قياس عدم اليقين (uncertainty quantification): فهي تقيس وتحدد عدم اليقين في مخرجات الذكاء الاصطناعي بطريقة مفصلة وموثوقة.
كيف يعمل ذلك؟
من خلال تزويد النماذج بوعي بعدم اليقين، يمكنها تزويد المخرجات بتصنيف للمخاطر أو الموثوقية. على سبيل المثال: يمكن للسيارة ذاتية القيادة أن تشير إلى أنها غير متأكدة من موقف معين، وبالتالي تفعيل تدخل بشري. هذا لا يزيد من السلامة فحسب، بل يزيد أيضًا من ثقة المستخدمين في أنظمة الذكاء الاصطناعي.
capsa_torch.wrapper() حيث يتكون الناتج من التنبؤ والمخاطرة على حد سواء:

الخلاصة
معهد ماساتشوستس للتكنولوجيا فريق يوضح أن مستقبل الذكاء الاصطناعي لا يتعلق فقط بأن يصبح أكثر ذكاءً، بل يتعلق بشكل أساسي بالعمل بشكل أكثر أمانًا وعدلاً. في نت كير، نؤمن بأن الذكاء الاصطناعي يصبح ذا قيمة حقيقية فقط عندما يكون شفافًا بشأن حدوده الخاصة. باستخدام أدوات تحديد كمية عدم اليقين المتقدمة مثل كابسا، يمكنك أيضًا تطبيق هذه الرؤية عمليًا.